LoRA: Low-Rank Adaptation of Large Language Models, Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, 2021International Conference on Learning Representations (ICLR)DOI: 10.48550/arXiv.2106.09685 - This influential paper introduces Low-Rank Adaptation (LoRA), a highly effective and widely adopted parameter-efficient fine-tuning technique that learns low-rank updates to existing weight matrices.