A Kernel Two-Sample Test, Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alex Smola, 2012The Journal of Machine Learning Research, Vol. 13 - Introduces Maximum Mean Discrepancy (MMD) for non-parametric comparison of data distributions, a fundamental approach for custom drift detection.
Autoencoder-based Anomaly Detection: A Survey, Raghu Chalapathy and Sanjay Chawla, 2019arXiv preprint arXiv:1901.03407 (arXiv)DOI: 10.48550/arXiv.1901.03407 - Surveys the application of autoencoders for anomaly detection, directly relevant to custom drift detection using reconstruction errors for high-dimensional data.
Designing Machine Learning Systems, Chip Huyen, 2022 (O'Reilly Media) - Provides practical guidance on building and monitoring ML systems, including discussions on different types of drift and strategies for effective monitoring.