Parameter Space Noise for Exploration, Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, Marcin Andrychowicz, 2017International Conference on Learning Representations (ICLR)DOI: 10.48550/arXiv.1706.01905 - The foundational paper that introduces parameter space noise as an exploration strategy and details an adaptive noise scaling mechanism.
Continuous Control with Deep Reinforcement Learning, Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra, 2015International Conference on Learning Representations (ICLR)DOI: 10.48550/arXiv.1509.02971 - Presents the Deep Deterministic Policy Gradient (DDPG) algorithm, a common setting where parameter space noise provides significant advantages for exploration.
Exploration in Deep Reinforcement Learning: A Survey, Yijun Li, Yihan Ding, Junge Zhang, Jianzhong Ding, Shuzhen Li, and Mengyuan Lin, 2022Neural Computing and Applications, Vol. 35 (Springer)DOI: 10.1007/s00521-022-07612-2 - A comprehensive review of various exploration strategies in deep reinforcement learning, including parameter space noise, providing broader context.