requires_grad
)backward()
).grad
)torch.nn
torch.nn.Module
Base Classtorch.nn
losses)torch.optim
)torch.utils.data.Dataset
torchvision.transforms
)torch.utils.data.DataLoader
Was this section helpful?
nn.RNN
module, detailing input/output shapes, parameters like batch_first
, and other configuration options.torch.nn.utils.rnn.pack_padded_sequence
and torch.nn.utils.rnn.pad_packed_sequence
, which are essential for handling variable-length sequences in PyTorch RNNs.