While understanding the theory of tensor parallelism (TP) and pipeline parallelism (PP) is important, putting them into practice requires specialized tools. Megatron-LM is a prominent library developed by NVIDIA specifically designed to facilitate these complex parallelism strategies, particularly for training large Transformer models. It provides optimized implementations of parallel layers and manages the intricate communication patterns required. Configuration steps for Megatron-LM to leverage TP and PP are presented.Configuration in Megatron-LM is typically handled through command-line arguments passed to the training script (like pretrain_gpt.py or similar). Let's look at the specifics for setting up tensor and pipeline parallelism.Tensor Parallelism (TP) ConfigurationTensor parallelism, sometimes called intra-layer model parallelism, involves splitting the execution of individual large layers (like the weight matrices in MLP blocks or attention mechanisms) across multiple GPUs. Megatron-LM provides specialized layer implementations (e.g., ColumnParallelLinear, RowParallelLinear) that handle this partitioning and the necessary communication (like AllReduce or AllGather) automatically.The primary argument to enable and control TP is --tensor-model-parallel-size (or a similar variant depending on the specific Megatron-LM version or fork). This value, let's call it $TP_{size}$, specifies the number of GPUs across which each tensor-parallel layer will be split.For example, if you set --tensor-model-parallel-size 4, a large linear layer's weight matrix would be partitioned into 4 column or row segments, with each segment residing on a different GPU within the tensor-parallel group. During the forward and backward passes, Megatron-LM orchestrates the required data exchanges between these 4 GPUs.# Illustration within a Megatron-LM context # (Actual usage involves Megatron's model definition utilities) # Assume tp_size = 2 # GPU 0 holds W_A, GPU 1 holds W_B where W = [W_A W_B] tp_group = get_tensor_model_parallel_group() # Function to get the TP communicator group # ColumnParallelLinear: Splits weight columns, # input is broadcast, output is gathered # Input X -> [X W_A, X W_B] -> AllGather -> Output Y linear_column_parallel = ColumnParallelLinear( input_size, output_size, tp_group=tp_group, ) # RowParallelLinear: Splits weight rows, # input is split, output is reduced # Input X -> [X_A, X_B] -> [X_A W_A, X_B W_B] -> AllReduce -> Output Y linear_row_parallel = RowParallelLinear( input_size, output_size, tp_group=tp_group, ) # Example usage within a transformer block (simplified) # mlp_output = linear_row_parallel(dropout( # linear_column_parallel(layer_input)))Important Considerations for TP:Divisibility: The $TP_{size}$ must evenly divide the model's hidden dimension (--hidden-size) and the number of attention heads (--num-attention-heads). Megatron-LM's parallel layers rely on this for partitioning.Communication: TP introduces communication overhead within the tensor-parallel group, typically AllReduce operations. The efficiency depends heavily on the interconnect speed between these GPUs (e.g., NVLink).Memory: TP reduces the memory required for weights, gradients, and optimizer states on each GPU within the group, but it increases activation memory usage due to communication requirements.Pipeline Parallelism (PP) ConfigurationPipeline parallelism involves partitioning the model's layers sequentially across different GPUs, forming a pipeline. Each GPU (or set of GPUs if combined with TP/DP) forms a "stage" in the pipeline, responsible for executing only a subset of the model's layers.The main argument for configuring PP is --pipeline-model-parallel-size (or similar). This value, $PP_{size}$, determines the number of stages in the pipeline. For instance, --pipeline-model-parallel-size 4 creates a 4-stage pipeline.To keep the pipeline stages utilized and minimize idle time ("bubbles"), Megatron-LM employs microbatching. The overall training batch is split into smaller microbatches that flow through the pipeline stages concurrently. The number of microbatches is a critical tuning parameter, often controlled by --num-microbatches or calculated based on the global batch size, microbatch size, and data parallel degree. A common scheduling approach is 1F1B (one forward pass, one backward pass per microbatch), which helps balance computation and memory usage.digraph G { rankdir=LR; node [shape=box, style=filled, color="#ced4da", fontname="helvetica", fontsize=24]; edge [fontname="helvetica"]; subgraph cluster_0 { label = "Stage 0"; style=filled; color="#e9ecef"; fontsize=24; node [color="#74c0fc", fontsize=24]; s0_mb1 [label="Fwd MB1", fontsize=24]; s0_mb2 [label="Fwd MB2", fontsize=24]; s0_mb3 [label="Fwd MB3", fontsize=24]; s0_mb1 -> s0_mb2 -> s0_mb3 [style=invis, fontsize=24]; // Sequence within stage } subgraph cluster_1 { label = "Stage 1"; style=filled; color="#e9ecef"; fontsize=24; node [color="#91a7ff", fontsize=24]; s1_mb1 [label="Fwd MB1", fontsize=24]; s1_mb2 [label="Fwd MB2", fontsize=24]; s1_mb3 [label="Fwd MB3", fontsize=24]; s1_mb1 -> s1_mb2 -> s1_mb3 [style=invis, fontsize=24]; } subgraph cluster_2 { label = "Stage 2"; style=filled; color="#e9ecef"; fontsize=24; node [color="#e599f7", fontsize=24]; s2_mb1 [label="Fwd MB1", fontsize=24]; s2_mb2 [label="Fwd MB2", fontsize=24]; s2_mb3 [label="Fwd MB3", fontsize=24]; s2_mb1 -> s2_mb2 -> s2_mb3 [style=invis, fontsize=24]; } s0_mb1 -> s1_mb1 [label=" Actvs", fontsize=24]; s0_mb2 -> s1_mb2 [label=" Actvs", fontsize=24]; s0_mb3 -> s1_mb3 [label=" Actvs", fontsize=24]; s1_mb1 -> s2_mb1 [label=" Actvs", fontsize=24]; s1_mb2 -> s2_mb2 [label=" Actvs", fontsize=24]; s1_mb3 -> s2_mb3 [label=" Actvs", fontsize=24]; // Backward pass arrows could be added for full 1F1B viz }Flow of microbatches (MB1, MB2, MB3) through forward passes (Fwd) of a 3-stage pipeline ($PP_{size}=3$). Activations (Actvs) are passed between stages. The backward pass follows a similar, reversed flow.Important Considerations for PP:Number of Layers: The total number of transformer layers (--num-layers) should ideally be divisible by $PP_{size}$ for balanced load distribution, although Megatron-LM can handle uneven distributions.Communication: PP involves point-to-point communication between adjacent stages to pass activations forward and gradients backward.Pipeline Bubble: The efficiency of PP depends on minimizing the pipeline bubble (idle time at the beginning and end of processing a batch). Increasing the number of microbatches helps, but also increases activation memory.Memory Balancing: Memory usage might not be perfectly balanced across stages, as the first and last stages often have embeddings and output layers, which can differ in size from intermediate transformer blocks.Combining Tensor and Pipeline ParallelismMegatron-LM excels at combining different parallelism strategies. Often, TP and PP are used together. In such a setup, the total number of GPUs involved in model parallelism is $TP_{size} \times PP_{size}$. Each pipeline stage might itself consist of multiple GPUs working together using tensor parallelism. Data parallelism (DP) can then be layered on top, replicating this TP/PP structure.The total number of GPUs used for training would be $N_{gpus} = DP_{size} \times TP_{size} \times PP_{size}$.digraph G { rankdir=LR; // Set global fontsize for all elements fontsize=24; node [shape=record, style=filled, fontname="helvetica", fontsize=24]; edge [fontname="helvetica", fontsize=24]; subgraph cluster_PP0 { label = "Pipeline Stage 0"; style=filled; color="#e9ecef"; fontsize=24; // Explicitly set cluster label fontsize node [color="#74c0fc", fontsize=24]; PP0 [label="{ GPU 0 | GPU 1 } | TP Group 0", fontsize=24]; } subgraph cluster_PP1 { label = "Pipeline Stage 1"; style=filled; color="#e9ecef"; fontsize=24; // Explicitly set cluster label fontsize node [color="#91a7ff", fontsize=24]; PP1 [label="{ GPU 2 | GPU 3 } | TP Group 1", fontsize=24]; } subgraph cluster_PP2 { label = "Pipeline Stage 2"; style=filled; color="#e9ecef"; fontsize=24; // Explicitly set cluster label fontsize node [color="#e599f7", fontsize=24]; PP2 [label="{ GPU 4 | GPU 5 } | TP Group 2", fontsize=24]; } subgraph cluster_PP3 { label = "Pipeline Stage 3"; style=filled; color="#e9ecef"; fontsize=24; // Explicitly set cluster label fontsize node [color="#ffc9c9", fontsize=24]; PP3 [label="{ GPU 6 | GPU 7 } | TP Group 3", fontsize=24]; } PP0 -> PP1 [label=" Activations/Grads", fontsize=24]; PP1 -> PP2 [label=" Activations/Grads", fontsize=24]; PP2 -> PP3 [label=" Activations/Grads", fontsize=24]; }Example configuration with 8 GPUs: $PP_{size}=4$ and $TP_{size}=2$. Each pipeline stage uses 2 GPUs for tensor parallelism. Communication occurs point-to-point between stages (PP) and using collective operations within each TP group (TP).Configuration ExampleHere's a simplified example of how command-line arguments might look when configuring Megatron-LM for a GPT-style model using both TP and PP (assuming a total of 8 GPUs, with $TP_{size}=2$ and $PP_{size}=4$, and data parallelism $DP_{size}=1$ for simplicity here):# Example training command using Megatron-LM arguments # (Actual script name and other args may vary) python pretrain_gpt.py \ --num-layers 24 \ --hidden-size 2048 \ --num-attention-heads 32 \ --seq-length 2048 \ \ --tensor-model-parallel-size 2 \ --pipeline-model-parallel-size 4 \ \ --micro-batch-size 4 \ --global-batch-size 128 \ # Assuming DP size is 1, num_microbatches = global_batch_size / (micro_batch_size * dp_size) # Needs careful calculation based on DP size. Let's assume DP=1 here. # Effective batch per pipeline = micro_batch_size * num_microbatches # global_batch_size = micro_batch_size * num_microbatches * dp_size # num_microbatches = global_batch_size / (micro_batch_size * dp_size) = 128 / (4 * 1) = 32 --num-microbatches 32 \ \ --optimizer adam \ --learning-rate 1.0e-4 \ --weight-decay 0.01 \ --clip-grad 1.0 \ \ --train-data-path <path_to_train_data> \ --valid-data-path <path_to_valid_data> \ --tokenizer-type SentencePieceTokenizer \ --tokenizer-model <path_to_tokenizer> \ \ --distributed-backend nccl \ --save <path_to_save_checkpoints> \ --load <path_to_load_checkpoints> \ --log-interval 10 \ --save-interval 1000 \ --eval-interval 100 \ --num-workers 2In this example:--tensor-model-parallel-size 2: Splits layers like Linear and Attention across 2 GPUs.--pipeline-model-parallel-size 4: Splits the 24 layers across 4 sequential stages (roughly 6 layers per stage).--num-microbatches 32: Used to feed the 4-stage pipeline efficiently, calculated based on global and micro batch sizes and data parallel degree.Configuring these parameters correctly is essential for balancing computation, memory usage, and communication overhead across the available hardware. Megatron-LM provides the underlying mechanisms, but determining the optimal $TP_{size}$, $PP_{size}$, and number of microbatches often requires experimentation based on the specific model architecture, hardware setup (GPU type, interconnects), and desired batch size.