Supervised Fine-tuning (SFT) Trainer, Hugging Face, 2024 (Hugging Face) - Official documentation for the SFTTrainer in the TRL library, covering practical implementation details of supervised fine-tuning for large language models, including data formatting and loss calculation.
Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback, Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe, 2022arXiv preprint arXiv:2203.02155DOI: 10.48550/arXiv.2203.02155 - Introduces the InstructGPT model, detailing the initial supervised fine-tuning (SFT) phase, data collection, and its role in aligning language models with human instructions and preferences.
Scaling Instruction-Finetuned Language Models, Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei, 2022arXiv preprint arXiv:2210.11416DOI: 10.48550/arXiv.2210.11416 - Explores the effectiveness of instruction tuning at scale, showcasing how training on diverse instruction datasets significantly improves the generalization ability of large language models for various tasks.