Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela, 2020Advances in Neural Information Processing Systems (NeurIPS), Vol. 33 (Curran Associates, Inc.) - The seminal paper introducing the Retrieval-Augmented Generation (RAG) framework, demonstrating the benefits of combining information retrieval with generative models, providing context for advanced retrieval optimization.