Constitutional AI: Harmlessness from AI Feedback, Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, Jared Kaplan, 2022arXiv preprint arXiv:2212.08073DOI: 10.48550/arXiv.2212.08073 - Introduces Constitutional AI, a method for aligning LLMs with human values using an AI-defined constitution and AI feedback for both supervised learning and reinforcement learning, addressing human scalability limitations.
RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback, Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, Sushant Prakash, 2024Proceedings of the 41st International Conference on Machine Learning, Vol. 235 (PMLR)DOI: 10.48550/arXiv.2309.00267 - Presents Reinforcement Learning from AI Feedback (RLAIF) as an alternative to RLHF, demonstrating how AI-generated preferences can train a reward model to align LLMs more scalably and effectively.
Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena, Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, Ion Stoica, 2023NeurIPS 2023 Datasets and Benchmarks TrackDOI: 10.48550/arXiv.2306.05685 - Investigates the reliability and efficacy of using large language models as judges for evaluating other LLMs, a fundamental component of many AI feedback mechanisms.