Constitutional AI: Harmlessness from AI Feedback, Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, Jared Kaplan, 2022arXiv preprint arXiv:2212.08073DOI: 10.48550/arXiv.2212.08073 - Introduces the Constitutional AI framework, including the methodology for generating AI feedback and revisions used for supervised fine-tuning.
Training Language Models to Follow Instructions with Human Feedback, Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe, 2022arXiv preprint arXiv:2203.02155 (arXiv)DOI: 10.48550/arXiv.2203.02155 - Details the supervised fine-tuning (SFT) phase, a crucial initial step in aligning large language models with human intentions and instructions.
LoRA: Low-Rank Adaptation of Large Language Models, Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, 2021arXiv preprint arXiv:2106.09685DOI: 10.48550/arXiv.2106.09685 - Presents Low-Rank Adaptation (LoRA), an efficient method for fine-tuning large language models by updating only a small number of additional parameters.
Fine-tune a pretrained model with custom datasets, Hugging Face, 2024 (Hugging Face) - A practical guide on how to perform supervised fine-tuning of language models using the Hugging Face transformers library, covering data preparation and training loop.