Constitutional AI: Harmlessness from AI Feedback, Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, Jared Kaplan, 2022arXiv preprint arXiv:2212.08073DOI: 10.48550/arXiv.2212.08073 - Describes the original approach to Constitutional AI, which forms the foundation for RLAIF, detailing how AI feedback can be used to align models with human values without human labeling.
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models, Samyam Rajbhandari, Cong Guo, Eikan Lim, Sheng Li, Sam Ade Jacobs, Sam Davis, Saurabh Tiwary, Zhewei Yao, Minjia Zhang, Reza Yazdani, Elton Zheng, Jeff Huang, Deepay Roy, Yuxiong He, 2020SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (IEEE)DOI: 10.1109/SC41405.2020.00008 - Introduces the ZeRO optimizer, a memory-efficient strategy for scaling training of very large models by partitioning optimizer states, gradients, and parameters across devices.
Proximal Policy Optimization Algorithms, John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov, 2017arXiv preprint arXiv:1707.06347DOI: 10.48550/arXiv.1707.06347 - Presents the Proximal Policy Optimization (PPO) algorithm, a widely used and robust on-policy reinforcement learning algorithm for policy optimization, central to many RLHF/RLAIF pipelines.
Ray: A Distributed System for AI Applications, Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Gokalp, Eric Rosen, Joshua Rosen, Joseph E. Gonzalez, Ion Stoica, 2018Proceedings of the 7th ACM Symposium on Cloud Computing (ACM)DOI: 10.1145/3267809.3270319 - Describes Ray, an open-source framework designed for building and running distributed AI applications, providing a unified API for distributed computing and mentioned for inference services.