Auto-Encoding Variational Bayes, Diederik P Kingma, Max Welling, 2013arXiv preprint arXiv:1312.6114DOI: 10.48550/arXiv.1312.6114 - Introduces the Variational Autoencoder (VAE) model, detailing the probabilistic framework, reparameterization trick, and ELBO objective, providing the theoretical foundation for the section.
Variational AutoEncoder (VAE), fchollet, 2024Keras Documentation - Official Keras example providing a practical implementation of a VAE using Model subclassing, custom layers, and train_step, mirroring the approach in the section.
Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016 (MIT Press) - Chapter 20 offers a theoretical explanation of Variational Autoencoders, including the mathematical derivation of the ELBO and the reparameterization trick.
Customizing what happens in Model.fit(), fchollet, 2023TensorFlow Documentation - Explains how to implement custom training steps and loss calculations using tf.keras.Model subclassing, which is central to the VAE's ELBO objective in the practical example.