Auto-Encoding Variational Bayes, Diederik P Kingma, Max Welling, 2014International Conference on Learning Representations (ICLR)DOI: 10.48550/arXiv.1312.6114 - This foundational paper introduced the Variational Autoencoder framework, defining the Evidence Lower Bound (ELBO) and detailing the role of the KL divergence term for latent space regularization.
Deep Learning, Ian Goodfellow, Yoshua Bengio, and Aaron Courville, 2016 (MIT Press) - Chapter 20 of this comprehensive textbook provides a thorough explanation of Variational Autoencoders, covering the derivation and interpretation of the ELBO and the function of its KL divergence term.
Tutorial on Variational Autoencoders, Carl Doersch, 2016arXiv preprint arXiv:1606.05908DOI: 10.48550/arXiv.1606.05908 - This accessible tutorial offers intuitive explanations of VAEs, specifically clarifying the KL divergence term's role in shaping the latent space and discussing the issue of posterior collapse.