Deep Residual Learning for Image Recognition, Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, 2015Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)DOI: 10.1109/CVPR.2016.90 - Introduces residual learning and skip connections, enabling the training of very deep neural networks for improved accuracy.
Densely Connected Convolutional Networks, Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger, 2017Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)DOI: 10.48550/arXiv.1608.06993 - Presents a network where each layer connects to every other layer in a feed-forward fashion, promoting feature reuse and reducing parameter count.
MobileNetV2: Inverted Residuals and Linear Bottlenecks, Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen, 2018The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE)DOI: 10.48550/arXiv.1801.04381 - Describes an efficient architecture for mobile and edge devices, focusing on low computational cost and parameter count using inverted residuals.